Понятие о сбалансированном комплекте олимпиадных заданий. Шкала сложности.
Введение данного понятия необходимо по нескольким причинам: первая причина заключается в том, что для построения такой педагогической модели, которую мы используем в данной работе, необходим какой-то определенный идеализированный подход к олимпиадным заданиям. То есть нужно представить себе идеальный случай, при помощи которого можно описать (математически и, главное, педагогически) все реально встречающиеся варианты. Вторая причина состоит в том, что для построения шкалы сложности задач, нужно иметь какой-то базовый элемент, относительно которого и происходит построение этой шкалы.
В данном параграфе описывается лишь формальное введение основного понятия данной теории. В полном описании математического вывода и доказательства педагогической оправданности сбалансированного комплекта задач нет необходимости в силу того, что сама по себе автоматизированная система не использует этого понятия, а использует только математические выводы, которые сделаны на его основе.
Под сбалансированным комплектом олимпиадных заданий, в контексте данной работы, будем понимать такой комплект заданий, в котором максимально равномерно воссоединены жесткий, естественный и щадящий режимы испытания для вывода серии всех испытаний школьников на гуманное отношение к личности школьников и бережное отношение к их талантам. В рамках представлений обсуждаемой модели, исходят из двух видов учебной деятельности учащихся и объясняют разный уровень сложности задач разным насыщением их решений формальными и творческими моментами. Эти требования к комплекту тождественны требованиям сбалансированности и полноты этого комплекта по отношению к репродуктивному, продуктивно-репродуктивному и продуктивному видам деятельности учащихся.
Хочется обратить внимание на то, что сбалансированный комплект представляет собой лишь идеализированную модель педагогического испытания школьников на олимпиадах. Ясно, что такой комплект в реальных условиях подобрать крайне сложно, однако он позволяет судить о том, какими должны быть олимпиадные задания, чтобы, в результате, можно было максимально приблизится к идеалу.
Вопрос об уровне сложности задач носит в рамках рассматриваемой теории достаточно важный характер. Наиболее исчерпывающий ответ на него может дать шкала сложности задач. Основные особенности подобной шкалы непосредственно оговариваются в исходных положениях теории. В связи с этим, следует упомянуть два момента. Первый момент заключается в том, что для полного анализа задач достаточен учет двух различных и несводимых друг к другу видов учебно-познавательной деятельности школьника – репродуктивной и продуктивной. Второй момент изначально оговаривает большие способности каждого школьника к репродуктивному виду деятельности по сравнению с продуктивным. Этот момент условно выразим неравенством: .
Принципиальная особенность указанных моментов заключается в том, что они определяют заведомо двумерный характер шкалы сложности задач. На этой шкале каждая задача должна характеризоваться двумя индексами, учитывающими два вида деятельности учащихся. В соответствии с этим любой единый показатель уровня сложности задач должен быть двумерным объектом. Это касается всех возможных шкал, включая и простейший случай ранжированной шкалы, оперирующей лишь целочисленной нумерацией уровней сложности задач. Она должна быть также двойной. Из всего сказанного выше ясно, что каждая задача в комплекте характеризуется точкой с координатами (k
n
,
k
p
) на шкале. Где k
n
– индекс задачи, характеризующий продуктивный (творческие задачи) вид деятельности, а k
p
– индекс, характеризующий репродуктивный (типовые задачи) вид деятельности.
Кроме всего прочего, для построения шкалы сложности особую значимость имеет местоположение на ней двух задач – «очевидной» и «недоступной», ограничивающих весь возможный диапозон сложности задач. «Очевидную» задачу можно определить как задачу, которую полностью решают все участники без исключения. В решении «недоступной» задачи ни один из участников не способен сделать даже одного оцениваемого шага.