Волчок и магнит.
Рис.3.
Тысячелетиями люди удивлялись чудесным свойствам магнита, но не могли разгадать его тайну, так как не знали законов волчка и строение атома.
Первое научное сочинение о магнетизме принадлежит английскому врачу Гильберту, написавшему в 1600 г. книгу «О магните, магнитных телах и большом магните—Земле». Здесь впервые уточняется понятие полюсов магнита, а также делается попытка понять строение магнита: если разделить магнит на части, то получится множество маленьких магнитов. Следовательно, магнит состоит из множества маленьких магнитиков.
Только в 1785 г. французский военный инженер Кулон, используя изобретенные
им крутильные весы, исследовал взаимодействие магнитных полюсов и доказал, что оно подчинено закону обратных квадратов, расстояния.
Однако природа магнита продолжала оставаться таинственной. Только аналогия притяжения и отталкивания магнитных полюсов и электрических зарядов наводила на мысль о родстве этих двух явлений. Лишь после обнаружения Эрстедом на опыте действия электрического тока на магнитную стрелку и уточнения Ампером законов этого, действия мысль о взаимосвязи электричества и магнетизма была подтверждена. Ампер выдвинул теорию, по которой магнит состоит из маленьких, элементарных круговых токов, но круговой ток. как известно, обладает магнитными полюсами (рис. 4). Фарадей и Максвелл разработали учение о магнитном поле.
N
S
Рис.4.
Еще Фарадей установил, что все вещества можно разделить. на две группы — парамагнитных и диамагнитных веществ и что нет материалов, безразличных к магнетизму. Правда, магнитные свойства большинства тел очень слабо выражены и для их
обнаружения приходится воздействовать очень сильными магнитными полями на маленькие и легкие образцы исследуемых материалов. Подвешивая стержень из висмута между полюсами сильного электромагнита, можно увидеть, что стержень устанавливается перпендикулярно направлению линий индукции магнитного поля, тогда как стержень из алюминия располагается параллельно этим линиям. Висмут диамагнитен, алюминий парамагнитен (в переводе с греческого пара — значит вдоль, диа — поперек, через).
Лишь в наши дни явления диа- и парамагнетизма получили свое объяснение в электронной теории. Начнем с диамагнетизма. Его происхождение связано с движением электронов вокруг ядра атома по орбите (назовем это движение орбитальным). Электрон, обращающийся вокруг ядра, можно уподобить волчку, и подобно тому как поле тяготения вызывает прецессию волчка, противодействующую силе тяжести, так внешнее магнитное поле вызывает прецессию вращающегося вокруг ядра электрона, противодействующую магнитному полю. Так как в любом атоме любого вещества происходит орбитальное движение электронов, то диамагнетизм свойствен всем видам вещества. Но диамагнитные свойства очень слабы и во многих случаях они перекрываются парамагнитными свойствами. От чего же зависят парамагнитные свойства? Дело в том, что, кроме орбитального движения, электронам присуще еще и вращательное движение вокруг их собственной оси. Для наглядности принято сравнивать движение электрона вокруг собственной оси с движением Земли вокруг оси (при одновременном ее движении по орбите вокруг Солнца). Таким образом, электрон уподобляется волчку, и его движение получило название «спин» (от английского глагола to spin — запускать волчок). Надо при этом иметь в виду, что это всего лишь полезный, наглядный образ. Современная физика отказалась от представления об электроне, как о каком-то вращающемся шарике, однако спин все-таки существует, и мы будем пользоваться этим наглядным образом электрона-волчка, обладающего магнитными свойствами.
В зависимости от направления вращения условно различают положительный спин и отрицательный. Два спина с противоположными знаками друг друга «нейтрализуют» (рис. 5).
S
N
N N