Аналогия между механическими и электромагнитными колебаниями.

= I, а x

= v. Таким образом, мы нашли еще одно соответствие между механическими и электрическими величинами.

Давайте составим таблицу, которая поможет нам систематизировать связи механических и электрических величин при колебательных процессах.

Таблица соответствия между механическими и электрическими величинами при колебательных процессах.

Механические величины

Электрические величины

Координата х

Заряд q

Скорость vx

Сила тока i

Масса m

Индуктивность L

Потенциальная энергия kx2/2

Энергия электрического поля q2/2

Жесткость пружины k

Величина, обратная емкости 1/C

Кинетическая энергия mv2/2

Энергия магнитного поля Li2/2

Урок 2.

Тема урока: Уравнение свободных гармонических колебаний в контуре. Колебаний.

Объяснение нового материала.

Цель урока: вывод основного уравнения электромагнитных колебаний, законов изменения заряда и силы тока, получения формулы Томсона и выражения для собственной частоты колебания контура с использованием презентаций PowerPoint.

Материал для повторения:

· понятие электромагнитных колебаний;

· понятие энергии колебательного контура;

· соответствие электрических величин механическим величинам при колебательных процессах.

(Для повторения и закрепления необходимо еще раз продемонстрировать модель аналогии механических и электромагнитных колебаний).

На прошлых уроках мы выяснили, что электромагнитные колебания, во-первых, являются свободными, во-вторых, представляют собой периодическое изменение энергий магнитного и электрического полей. Но кроме энергии при электромагнитных колебаниях меняется еще и заряд, а значит и сила тока в контуре и напряжение. На этом уроке мы должны выяснить законы, по которым меняются заряд, а значит сила тока и напряжение.

Итак, мы выяснили, что полная энергия колебательного контура в любой момент времени равна сумме энергий магнитного и электрического полей: . Считаем, энергия не меняется со временем, то есть контур – идеальный. Значит производная полной энергии по времени равна нулю, следовательно, равна нулю сумма производных по времени от энергий магнитного и электрического полей:

, то есть .

Знак минус в этом выражении означает, что когда энергия магнитного поля возрастает, энергия электрического поля убывает и наоборот. А физический смысл этого выражения таков, что скорость изменения энергии магнитного поля равна по модулю и противоположна по направлению скорости изменения электрического поля.

Вычисляя производные, получим

.

Но , поэтому и - мы получили уравнение, описывающее свободные электромагнитные колебания в контуре. Если теперь мы заменим q на x, х’’=ах на q’’, k на 1/C, m на L, то получим уравнение

,

описывающее колебания груза на пружине. Таким образом, уравнение электромагнитных колебаний имеет такую же математическую форму, как уравнение колебаний пружинного маятника.

Перейти на страницу: 1 2 3 4