Описание и результаты эксперимента.
Эксперимент проводится в СШ №46 (гимназия №4)
под руководством Баязитовой Л.Ш. в 8б и 8г.
Перед проведением уроков по обобщающему повторению в обоих классах была проведена самостоятельная работа с целью узнать их уровень знаний.
Проверочная самостоятельная работа.
Через точку пересечения диагоналей параллелограмма ABCD проведена прямая, пересекающая стороны AD и BC в точках Е и F соответственно. Найдите стороны параллелограмма, если его периметр равен 28 см, АЕ = 5 см, ВF = 3 см. [1. Биссектрисы углов А и D параллелограмма ABCD пересекаются в т. М лежащей на стороне ВС. Найдите стороны параллелограмма, если его периметр равен 36 см.]
Найдите меньшую боковую сторону прямоугольной трапеции, основания которой равны 10 см и 6 см, а один из углов 45о [2. Найдите боковую сторону равнобедренной трапеции, основания которой равны 12 см и 6 см, а один из углов 60о]
Самостоятельная показала, что знания у учеников в обоих классах разрозненные, решают задания очень медленно. Оценки по самостоятельной работе низкие. (Это показано на графике.)
После самостоятельной работы, используя таблицу темы: «Четырехугольники», которая приведена в методическом пособии по геометрии (Гудвин и Гангнус ч.1). Перед учащимися можно поставить ряд вопросов, ответы на которые ученики не найдут в готовой форме в учебнике, а должны поработать головой, чтобы дать их.
Приведём некоторые вопросы, которые ставятся нами перед учащимися:
Как из равнобедренной трапеции получить квадрат? Какие дополнительные условия необходимы для этого?
Как из параллелограмма получить квадрат?
Как трапецию обратить в ромб?
Являясь параллелограммом, ромб имеет свои обычные свойства. Перечислите их. Тоже о квадрате.
Перечислите , какими свойствами параллелограмма обладает ромб? Квадрат? Прямоугольник? И т.д.
Наряду с использованием указанной таблицы перед учащимися были поставлены вопросы: в каком четырехугольнике:
Диагональ делит его на два равных треугольника?
Диагонали пересекаются в одной точке и делятся пополам?
Диагонали являются биссектрисами внутренних углов?
Диагонали взаимно перпендикулярны?
Диагонали служат осями симметрии?
Учащиеся должны были дать не только ответы на вопросы, но каждый ответ обосновать, ссылаясь на изученные теоремы.
Ответ считали малоценным, если он перечислял без системы отдельные виды четырехугольников, в которых диагонали обладают требуемым свойством. Так если на вопрос: «В каких четырехугольниках диагонали пересекаясь делятся пополам? »
Ученик отвечал: «Диагонали, пересекаются в одной точке, делятся пополам в параллелограмме, ромбе, квадрате ».
Не перебивая его давали возможность ученику высказаться, но по окончанию ответа ставили вопрос: «Следует ли для ответа на поставленный вопрос перечислять все виды четырехугольников? Нельзя ли дать полный и исчерпывающий ответ, но в более короткой формулировке? »
Если ученик затрудняется ответить на эти вопросы, перед ним ставились дополнительные вопросы: «Является ли прямоугольник параллелограммом? Почему?»
Подобные вопросы ставились и по отношению к ромбу и квадрату.
Следовательно, можно ли утверждать, что прямоугольник, квадрат, ромб — есть параллелограмм?
После этого учащимся не составляло затруднений дать такой ответ:
«Диагонали, пересекаются и точкой пересечения делятся пополам в параллелограммах».
Если учащихся давали сразу исчерпывающий ответ и при том в краткой форме, мы давали дополнительные вопросы с целью выяснить, на сколько сознательно усвоен материал.
Так если на вопрос: «В каком четырехугольнике диагональ делит его на два равных треугольника?»
Следовал ответ: «Диагональ делит четырехугольник на два равных треугольника в том случае, если он параллелограмм», то ученику ставился вопрос: «А в прямоугольнике, квадрате, ромбе диагональ не обладает тем же свойством?»