Опыт введения элементов алгебры в начальной школе
В свою очередь многочисленные наблюдения психологов и педагогов показывают, что количественные представления возникают у детей задолго до появления у них знаний о числах и приемах оперирования ими. Правда, есть тенденция относить эти представления к категории "доматематических образований" (что вполне естественно для традиционных методик, отождествляющих количественную характеристику объекта с числом), однако это не меняет существенной их функции в общей ориентировке ребенка в свойствах вещей. И порой случается, что глубина этих якобы "доматематических образований" более существенна для развития собственно математического мышления ребенка, чем знание тонкостей вычислительной техники и умение находить чисто числовые зависимости. Примечательно, что акад. А.Н. Колмогоров, характеризуя особенности математического творчества, специально отмечает следующее обстоятельство: "В основе большинства математических открытий лежит какая-либо простая идея: наглядное геометрическое построение, новое элементарное неравенство и т.п. Нужно только применить надлежащим образом эту простую идею к решению задачи, которая с первого взгляда кажется недоступной" ([12], стр. 17).
В настоящее время целесообразны самые различные идеи относительно структуры и способов построения новой программы. К работе по ее конструированию необходимо привлечь математиков, психологов, логиков, методистов. Но во всех своих конкретных вариантах она, как представляется, должна удовлетворять следующим основным требованиям:
§ преодолевать существующий разрыв между содержанием математики в начальной и средней школе;
§ давать систему знаний об основных закономерностях количественных отношений объективного мира; при этом свойства чисел, как особой формы выражения количества, должны стать специальным, но не основным разделом программы;
§ прививать детям приемы математического мышления, а не только навыки вычислений: это предполагает построение такой системы задач, в основе которой лежит углубление в сферу зависимостей реальных величин (связь математики с физикой, химией, биологией и другими науками, изучающими конкретные величины);
§ решительно упрощать всю технику вычисления, сводя до минимума ту работу, которую нельзя выполнить без соответствующих таблиц, справочников и других подсобных (в частности, электронных) средств.
Смысл этих требований ясен: в начальной школе вполне возможно преподавать математику как науку о закономерностях количественных отношений, о зависимостях величин; техника вычислений и элементы теории чисел должны стать особым и частным разделом программы.
Опыт конструирования новой программы по математике и ее экспериментальная проверка, проводимая начиная с конца 1960-х годов, позволяют уже в настоящее время говорить о возможности введения в школу начиная с I класса систематического курса математики, дающего знания о количественных отношениях и зависимостях величин в алгебраической форме.