Сравнение (противопоставление) понятий на уроках математики
Например, фраза «За числом 2 следует число З» изображается символически так: 2 + 1 = 3; однако психологически выгодно создать сразу вслед за ней противоположную связь мыслей, а именно: выражение «Перед числом 3 идет число 2» подкрепляется записью: 3 – 1 = 2.
Чтобы добиться понимания места какого-либо числа в числовом ряду, следует предлагать парные вопросы:
1. За каким числом следует число 3? (Число 3 следует за числом 2.) Перед каким числом расположено число 2? (Число 2 расположено перед числом 3.)
2. Какое число следует за числом 2? (За числом 2 следует число 3.) Какое число идет перед числом 3? (Перед числом 3 идет число 2.)
3. Между какими числами находится число 2? (Число 2 находится между числом 1 и числом 3.) Какое число находится между числами 1 и 3? (Между числами 1 и 3 находится число 2.)
В этих упражнениях математическая информация заключена в служебных словах: перед, за, между.
Работу с числовым рядом удобно сочетать со сравнением чисел по величине, а также со сравнением положения чисел на числовой прямой. Постепенно вырабатываются связи суждений геометрического характера: число 4 находится на числовой прямой правее числа 3; значит, 4 больше 3. И наоборот: число 3 находится на числовой прямой левее числа 4; значит, число 3 меньше числа 4. Так устанавливается связь между парами понятий: правее — больше, левее — меньше.
Из изложенного выше мы видим характерную черту укрупненного усвоения знаний: весь набор понятий, связанных со сложением и вычитанием, предлагается совместно, в своих непрерывных переходах (перекодировках) друг в друга.
Главным средством овладения числовыми соотношениями в нашем учебнике являются цветные бруски; их удобно сравнить по длине, устанавливая, на сколько клеток больше или меньше их в верхнем или в нижнем бруске. Иначе говоря, понятие «разностное сравнение отрезков» мы не вводим как особую тему, но учащиеся знакомятся с ним в самом начале изучения чисел первого десятка. На уроках, посвященных изучению первого десятка, удобно использовать цветные бруски, которые позволяют выполнять пропедевтику основных видов задач на действия первой ступени.
Рассмотрим пример.
Пусть друг на друга наложены два цветных бруска, разделенных на клетки:
в нижнем — 3 клетки, в верхнем — 2 клетки (см. рис.).
Сравнивая количество клеток в верхнем и нижнем брусках, учитель составляет два примера на взаимно-обратные действия (2 + 1 = 3, 3 – 1 = 2), причем решения этих примеров прочитываются попарно всеми возможными способами:
2 + 1 = 3 3 – 1 = 2
а) к 2 прибавить 1 — получится 3; а) из 3 вычесть 1 - получится 2;
б) 2 увеличить на 1 — получится 3; б) 3 уменьшить на 1 - получится 2;
в) 3 больше 2 на 1; в) 2 меньше 3 на 1;
г) 2 да 1 будет 3; г) 3 без 1 будет 2;
д) число 2 сложить с числом 1 — д) из числа 3 вычесть число 1 —
получится 3. получится 2.
Учитель. Если 2 увеличить на 1, то сколько получится?
Ученик. Если 2 увеличить на 1, то получится 3.
Учитель. А теперь скажите, что надо сделать с числом 3, чтобы получить 2?
Ученик. 3 уменьшить на 1, получится 2.
Обратим здесь внимание на необходимость в этом диалоге методически грамотного осуществления операции противопоставления. ,