Заключение
В настоящее время возникли достаточно благоприятные условия для коренного улучшения постановки математического образования в начальной школе:
1) начальная школа из трехлетней преобразована в четырехлетнюю;
2) на изучение математики в первые четыре года выделяется 700 ч., т. е. почти 40 % всего времени, отводимого этому предмету за всю среднюю школу;
3) учителями начальной школы работает с каждым годом все большее число лиц, имеющих высшее образование;
4) возросли возможности лучшего обеспечения учителей и школьников учебно-наглядными пособиями, причем многие из них выпускаются в цветном исполнении.
Нет необходимости доказывать решающую роль начального обучения математике для развития интеллекта ученика вообще. Богатство базисных ассоциаций, обретаемых школьником за первые четыре года обучения, при правильной постановке дела становится главным условием самонаращивания знаний в последующие годы. Если этот запас исходных представлений и понятий, ходов мыслей, основных логических приемов будет неполон, негибок, обеднен, то при переходе в старшие классы школьники будут постоянно испытывать трудности, независимо от того, кто их будет учить дальше или по каким учебникам они будут учиться.
Как известно, начальная школа функционирует в нашей и других странах много веков, в то время как всеобщее среднее образование осуществляется лишь несколько десятилетий. Понятно отсюда, что теория и практика начального обучения гораздо богаче своими добротными традициями, чем обучение в старших классах.
Драгоценные методические находки и обобщения по начальному обучению математике были сделаны еще Л. Н. Толстым, К. Д. Ушинским, С. И. Шохор-Троцким, В. Латышевым и другими методистами уже в прошлом веке. Значительные результаты были получены в последние десятилетия по методике начальной математики в лабораториях Л. В. Занкова, А. С. Пчелко, а также в исследованиях по укрупнению дидактических единиц.
Между тем современное состояние дела обучения в начальной школе таково, что эффективные пути его совершенствования, освоенные учителями в недавние годы, оказались неожиданно обойденными последними редакциями программ и учебников. Серьезный недостаток действующих сейчас программ — это нарушение преемственности с программами для средних классов.
Так, например, в программах начальных классов не решена проблема пропедевтики ряда важных понятий, которая успешно достигалась ранее в начальной школе. Такой пропедевтики не получилось из-за вымученного растягивания программами традиционного материала, который раньше осваивали гораздо быстрее и продуктивнее. Программа нынешней четырехлетней школы стала менее информативной, чем предшествовавшая ей программа для трехлетней школы.
При разумном учете наличных научных результатов, полученных в последние 20 лет по методике начального обучения различными творческими коллективами, сейчас имеется полная возможность добиться в начальной школе «учения с увлечением».
В частности, знакомство учащихся с базовыми алгебраическими понятиями, несомненно, положительно скажется на освоении учащимися соответствующих знаний в старших классах.
Представляется, что лишение младшего школьника доступного и необходимого знания обернется для него уроном, невосполнимым никогда позже.
Для практики начального обучения математике имеет важнейшее значение прием совмещения на одном уроке (в пространстве одной страницы учебника) взаимно-обратных задач. Поэтому представляется совершенно необходимым пользоваться традиционными названиями основных видов сопоставляемых друг другу задач: если повторение равных слагаемых выступает как умножение, то и обратные им задачи (деление на равные части и деление по содержанию) должны использоваться в учебниках, при планировании и проведении уроков. В действующих программах мы не находим привычных понятий: задач на нахождение суммы, нахождение чисел по двум суммам, на приведение к единице, на пропорциональное деление и т.д. Такое положение отнюдь не является достоинством программ.
Психологом Ж. Пиаже была установлена фундаментальная закономерность обратимости операций, с которой связано методическое понятие «обратная задача». В частности, всякая информация, воспринятая человеком, продолжает циркулировать в подсознании (в неосознаваемой форме) в течение 20-30 мин. И вот, если при умножении 172 на 43 нами получено промежуточное произведение 688, то это же число легче всего проявляется (актуализируется) при решении обратной задачи на деление «уголком» (7396:172). Связь мыслей «умножение – деление» как бы прокручивается здесь дважды.