Обучение через задачи
Опыт применения вспомогательных задач на кружковых и факультативных занятиях по математике показывает, что школьники, научившись самостоятельно решать задачи с помощью вспомогательных задач, предложенных учителем, замечают, что среди задач A1 —A2 — . —An имеются и такие, которые либо уже были решены ими ранее, либо решаются способами (приемами), известными им. Это наталкивает учащихся на мысль, что при решении новой задачи следует самостоятельно отыскивать среди уже решенных ранее задач родственные данной и использовать их в качестве вспомогательных. Так воспитывается умение при самостоятельном решении задач возвращаться к своему опыту и применять его при продвижении вперед. Последнее является важным звеном умения решать задачи, умения самостоятельно приобретать новые знания.
Курсы, построенные на задачах, не содержат деления материала на теоретическую и практическую части. Сами задачи — это и есть изучаемый курс. Поэтому и содержание задач, и способы решения их направлены как на вооружение учащихся теоретическими знаниями, так и на выработку умений и закрепление навыков. Рассматриваемые определения обычно включаются в содержание задач. Возможна формулировка определений и отдельно от задач. Теоремы имеют тоже вид задач. Если теорема большая или сложная, то она разбивается на последовательность таких задач, что решение предыдущей облегчает решение последующей, а совокупность этих решений дает доказательство теоремы.
Любая тема курса состоит из серии задач, которые должны быть полностью решены каждым учеником, так как только в этом случае достигается полное усвоение определенной математической теории. Однако в индивидуальные задания могут быть включены задачи подготовительные, вспомогательные или задачи для самоконтроля, которые не обязательны для всех учеников.
Перед изучением темы организуется пропедевтическая работа, ставящая своей целью подготовить учеников к самостоятельному активному изучению материала. В частности, здесь выявляются и ликвидируются пробелы в знаниях и формируются необходимые предварительные представления. Затем учитель в форме лекции или беседы вводит учеников в тему, намечает круг вопросов, подлежащих изучению, формулирует сам или подводит учащихся к самостоятельной формулировке первой проблемной задачи курса.
Основным этапом занятий является самостоятельное решение школьниками задач. Учащимся в процессе самостоятельной работы разрешается пользоваться справочниками и конспектами, поскольку необходимо умственное развитие, умение самостоятельно решить возникающие задачи. Индивидуальная помощь учителя носит характер не подсказки, а направления на верный путь решения, для чего используются вспомогательные задачи. Расположение задач в серии по принципу нарастающей трудности стимулирует развитие самостоятельности учеников. Обучение с использованием серии вспомогательных задач строится по принципу от сложного к простому, от трудного к более легкому, что способствует формированию элементов творчества, стимулирует поиски учащимися способов решения, побуждает их мыслить. После решения всех задач серии проводится коллективное обсуждение результатов. Полученный материал обобщается для последующего применения полученных знаний при решении нового класса задач, делаются теоретические выводы. Всячески поощряется самостоятельность учеников в суждениях, в отстаивании собственного мнения.