Изучение функций в школе

£ 24, можно найти соответствующую температуру p (в градусах Цельсия). Например,

если t

= 6, то p = -2;

если t

= 12, то p = 2;

если t

= 17, то p = 3;

Здесь t

является независимой переменной, а p - зависимой переменной.

П р и м е р 3. Стоимость проезда в пригородном поезде зависит от номера зоны, к которой относится станция. Эта зависимость показана в таблице (буквой n обозначен номер зоны, а буквой m - соответствующая стоимость проезда в тысячах рублей):

По этой таблице для каждого значения n, где n = 1, 2, ., 9, можно найти соответствующее значение m. Так,

если n = 2, то m = 1.5;

если n = 6, то m = 4 ;

если n = 9, то m = 8.5;

В этом случае n является независимой переменной, а m - зависимой переменной.”

Обилие примеров, призванных проиллюстрировать понятие функции, объясняется тем фактом, что проводя аналогии между различными примерами, учащиеся интуитивно нащупывают суть этого понятия, строят догадку относительно функциональных зависимостей в быту и в природе, и получают ее подтверждение в последующих примерах. Второй не менее важной причиной является то, что каждый из этих примеров содержит функцию заданную одним из возможных способов. В первом примере она задана аналитически, во втором - графически, в третьем это таблица. Это не случайность, разбирая примеры вместе с учителем, дети сразу привыкают к различным способам задания функций. И когда преподаватель начнет рассказывать параграф о способах задания функций, ученикам будет гораздо легче осознать новый материал, потому что для них он не будет абсолютно новым - они уже сталкивались с этим ранее.

Далее дается само определение функции, вводятся термины аргумент

и значение функции

.

“В рассмотренных примерах каждому значению независимой переменной соответствует единственное значение зависимой переменной. Такую зависимость одной переменной от другой называют функциональной зависимостью

или функцией

.

Независимую переменную иначе называют аргументом

, а о зависимой переменной говорят, что она является функцией

от этого аргумента. Так, площадь квадрата является функцией от длины его стороны; путь, пройденный автомобилем с постоянной скоростью, является функцией от времени движения. Значения зависимой переменной называют значениями функции

.

Все значения которые принимает независимая переменная, образуют область определения функции

.”

Так на практике реализуется индуктивный подход к изучению функций в школе. Альтернативой ему служит дедуктивный подход, который, хотя и применяется реже, имеет целый ряд положительных аспектов, которые и стали причиной его применения в школе. Для этого подхода характерно первоначальное полное и сжатое изложение учебного материала, пускай даже малопонятного при первом прочтении, и дальнейшая углубленная проработка всех примеров, терминов и определений. Такой подход к изучению функций и не только их позволяет учащимся самостоятельно попытаться проследить логические связи в излагаемом материале, резко увеличивает интенсивность мыслительной деятельности, способствует более активному и глубокому запоминанию. Вот как выглядит изложение той же темы “Понятие функции” в соответствии с дедуктивным подходом:

Перейти на страницу: 1 2 3