Электромагнитные и механические аналогии.

получаем

(4)

Уравнение (4) является основным уравнением, описывающем процессы в колебательном контуре.

Рассмотрим колебания вертикального пружинного и математического маятников.

Выведем груз из положения равновесия, рас­тянув пружину на длину Хm (рис.2) и от­пустим. (Амплитудное растяжение пружины Xm должно быть таково, чтобы был справедлив закон Гука и выводимая на его основе формула потенциальной энергии пружины.)

Рис.2

Мгновенные значения координаты груза х в процессе колебаний лежат в пределах -xm£x£xm . По закону сохраненья энергии имеем:

(5)

где X0=mg/k - статическое растяжение пру­жины (потенциальную энергию груза в поле силы тяжести отсчитываем от уровня равно­весия груза, обозначенного на рис. 2 пункти­ром). Учитывая, что и , получим уравнение колебаний

=соnst (6)

Как видно уравнения колебаний горизонтального и вертикального пружинных маятников одинаковы.

Ускорение свободного падения g, имеющееся в уравнении (5), отсутствует в полученном уравнении колебаний. Следовательно, колеба­ния груза на пружине не зависят от g и оди­наковы, например, на Земле и Луне.

Хотя в дифференциальные уравнения (1) и (6) входят разные величины, математически они эквивалентны.

По аналогии с уравнением (4) описывающем процессы в колебательном контуре, запишем уравнение колебания пружинного маятника:

; ;

получим

, (7)

Отклоним теперь математический маятник длиной l (рис. 3) от положения равновесия на длину дуги sm<<l и отпустим. Мгновен­ная высота подъема маятника

рис.3

так как при a<<1 можно считать , а s=la. По закону сохранения энергии имеем:

, где

или

=const (8)

По аналогии с формулами (4) и (7) x®q®s; ; получаем:

S``= - (9)

Различие уравнений (1), (6) и (9) состоит только в обозначениях и физическом смысле входящих в них величин.

Если не предполагать sm<<l (соответственно am=<<1 рад.), то получится слож­ное уравнение, решить которое в рамках школьного курса невозможно. Оно будет опи­сывать колебания, период которых зависит от амплитуды. Строго говоря, период колебаний маятника всегда зависит от am, однако при sm<<l рад. этой зависимостью можно пре­небречь.

Перейти на страницу: 1 2 3 4 5