Проблема происхождения алгебраических понятий и ее значение для построения учебного предмета
Множество предметов только тогда претворяется в величину, когда устанавливаются критерии, позволяющие установить относительно любых его элементов А и В, будет ли А равно В, больше В или меньше В. При этом для любых двух элементов А и В имеет место одно и только одно из соотношений: А=В, А>В, А<В.
Эти предложения составляют полную дизъюнкцию (по крайней мере одно имеет место, но каждое исключает все остальные).
В.Ф. Каган выделяет следующие восемь основных свойств понятий "равно", "больше", "меньше": ([10], c. 17-31).
1) Имеет место по крайней мере одно из соотношений: А=В, А>В, А<В.
2) Если имеет место соотношение А=В, то не имеет места соотношение А<В.
3) Если имеет место соотношение А=В, то не имеет места соотношение А>В.
4) Если А=В и В=С, то А=С.
5) Если А>В и В>С, то А>С.
6) Если А<В и В<С, то А<С.
7) Равенство есть отношение обратимое: из соотношения А=В всегда следует соотношение В=А.
8) Равенство есть соотношение возвратное: каков бы ни был элемент А рассматриваемого множества, А=А.
Первые три предложения характеризуют дизъюнкцию основных соотношений "=", ">", "<". Предложения 4 - 6 - их транзитивность при любых трех элементах А, В и С. Следующие предложения 7 - 8 характеризуют только равенство - его обратимость и возвратность (или рефлексивность). Эти восемь основных положений В.Ф.Каган называет поcтулатами сравнения, на базе которых можно вывести ряд других свойств величины.
Эти выводные свойства В.Ф. Каган описывает в форме восьми теорем:
I. Соотношение А>В исключает соотношение В>А (А<В исключает В<А).
II. Если А>В, то В<А (если А<В, то В>А).
III. Если имеет место А>В, то не имеет места A<B.
IV. Если А1=А2, А2=А3, , Аn-1=А1, то А1=Аn.
V. Если А1>А2, А2>А3, , Аn-1>Аn, то А1>Аn.
VI. Если А1<А2, А2<А3, , Аn-1<Аn, то А1<Аn.
VII. Если А=С и В=С, то А=В.
VIII. Если имеет место равенство или неравенство А=В, или А>В, или А<В, то оно не нарушится, когда мы один из его элементов заменим равным ему элементом (здесь имеет место соотношение типа:
если А=В и А=С, то С=В;
если А>В и А=С, то С>В и т.д.).
Постулатами сравнения и теоремами, указывает В.Ф. Каган, "исчерпываются все те свойства понятий "равно", "больше" и "меньше", которые в математике с ними связываются и находят себе применение независимо от индивидуальных свойств того множества, к элементам коего мы их в различных частных случаях применяем" ([10], стр. 31).
Свойства, указанные в постулатах и теоремах, могут характеризовать не только те непосредственные особенности объектов, которые мы привыкли связывать с "равно", "больше", "меньше", но и со многими другими особенностями (например, они могут характеризовать отношение "предок - потомок"). Это позволяет встать при их описании на общую точку зрения и рассматривать, например, под углом зрения этих постулатов и теорем любые три вида отношений "альфа", "бета", "гамма" (при этом можно установить, удовлетворяют ли эти отношения постулатам и теоремам и при каких условиях).
Под таким углом зрения можно, например, рассматривать такое свойство вещей, как твердость (тверже, мягче, одинаковая твердость), последовательность событий во времени (следование, предшествование, одновременность) и т.д. Во всех этих случаях соотношения "альфа", "бета", "гамма" получают свою конкретную интерпретацию. Задача, связанная с подбором такого множества тел, которое бы имело эти отношения, а также выявление признаков, по которым можно было бы характеризовать "альфа", "бета", "гамма", - это есть задача на определение критериев сравнения в данном множестве тел (практически ее в ряде случаев решить нелегко). "Устанавливая критерии сравнения, мы претворяем множество в величину", - писал В.Ф. Каган ([10], стр. 41).
Реальные объекты могут рассматриваться под углом зрения разных критериев. Так, группа людей может рассматриваться по такому критерию, как последовательность моментов рождения каждого ее члена. Другой критерий - относительное положение, которое примут головы этих людей, если их поставить рядом на одной горизонтальной плоскости. В каждом случае группа будет претворяться в величину, имеющую соответствующее наименование - возраст, рост. В практике величиной обычно обозначают как бы не самое множество элементов, а новое понятие, введенное для различения критериев сравнения (наименование величины). Так возникают понятия "объем", "вес", "электрическое напряжение" и т.д. "При этом для математика величина вполне определена, когда указаны множество элементов и критерии сравнения", - отмечал В.Ф. Каган ([10], стр. 47).