Проблема происхождения алгебраических понятий и ее значение для построения учебного предмета
Эти задачи решаются в процессе работы с дидактическим материалом (планками, грузами и т.д.) путем:
- выбора "такого же" предмета,
- воспроизведения (построения) "такого же" предмета по выделенному (указанному) параметру.
Тема II. Сравнение объектов и фиксация его результатов формулой равенства-неравенства.
1. Задачи на сравнение объектов и знаковое обозначение результатов этого действия.
2. Словесная фиксация результатов сравнения (термины "больше", "меньше", "равно"). Письменные знаки ">", "<", "=".
3. Обозначение результата сравнения рисунком ("копирующим", а затем "отвлеченным" - линиями).
4. Обозначение сравниваемых объектов буквами. Запись результата сравнения формулами: А=Б; А<Б, А>B.
Буква как знак, фиксирующий непосредственно данное, частное значение объекта по выделенному параметру (по весу, по объему и т.д.).
5. Невозможность фиксации результата сравнения разными формулами. Выбор определенной формулы для данного результата (полная дизъюнкция отношений больше - меньше - равно).
Тема III. Свойства равенства и неравенства.
1. Обратимость и рефлексивность равенства (если А=Б, то Б=А; А=А).
2. Связь отношений "больше" и "меньше" в неравенствах при "перестановках" сравниваемых сторон (если А>Б, то Б<А и т.п.).
3. Транзитивность как свойство равенства и неравенства:
если А=Б, если А>Б, если А<Б,
а Б=В, а Б>В, а Б<В,
то А=В; тo A>B; тo А<В.
4. Переход от работы с предметным дидактическим материалом к оценкам свойств равенства-неравенства при наличии только буквенных формул. Решение разнообразных задач, требующих знания этих свойств (например, решение задач, связанных со связью отношений типа: дано, что А>В, а В=С; узнать отношение между А и С).
Тема IV. Операция сложения (вычитания).
1. Наблюдения за изменениями объектов по тому или иному параметру (по объему, по весу, по длительности и т.д.). Изображение увеличения и уменьшения знаками "+" и "-" (плюс и минус).
2. Нарушение ранее установленного равенства при соответствующем изменении той или иной его стороны. Переход от равенства к неравенству. Запись формул типа:
если А=Б, если А=Б,
то А+К>Б; то А-К<Б.
3. Способы перехода к новому равенству (его "восстановление" по принципу: прибавление "равного" к "равным" дает "равное").
Работа с формулами типа:
если А=Б,
то А+К>Б,
но А+К=Б+К.
4. Решение разнообразных задач, требующих применения операции сложения (вычитания) при переходе от равенства к неравенству и обратно.
Тема V. Переход от неравенства типа А<Б к равенству через операцию сложения (вычитания).
1. Задачи, требующие такого перехода. Необходимость определения значения величины, на которую разнятся сравниваемые объекты. Возможность записи равенства при неизвестном конкретном значении этой величины. Способ использования х (икса).
Запись формул типа:
если A<Б, если А>Б,
то A+х=Б; то А-x=B.
2. Определение значения х. Подстановка этого значения в формулу (знакомство со скобками). Формулы типа
А<Б,
А+х=Б,
х=Б-А,
А+(Б-А)=Б.
3. Решение задач (в том числе и "сюжетно-текстовых"), требующих выполнения указанных операций.
Тема Vl. Сложение-вычитание равенств-неравенств. Подстановка.
1. Сложение-вычитание равенств-неравенств:
если А=Б если А>В если А>В
и М=D, и К>Е, и Б=Г,
тo A+M=Б+D; то А+К>В+E; то А+-Б>В+-Г.
2. Возможность представления значения величины суммой нескольких значений. Подстановка типа:
А=Б,
Б=Е+К+М,
А=E+К+М.
3. Решение разнообразных задач, требующих учета свойств отношений, с которыми дети познакомились в процессе работы (многие задачи требуют одновременного учета нескольких свойств, сообразительности при оценке смысла формул; описание задач и решения приведены ниже).
Такова программа, рассчитанная на 3,5 - 4 мес. первого полугодия. Как показывает опыт экспериментального обучения, при правильном планировании уроков, при усовершенствовании методики преподавания и удачном выборе дидактических пособий весь изложенный в программе материал может быть полноценно усвоен детьми за более короткий срок (за 3 месяца).