Обучение решению задач, связанных с движением тел

Задачи на движение, рассматриваемые в начальных классах, включают в себя описание процесса движения одного или двух тел. Эти задачи по существу математических зависимостей между величинами, входящими в задачу. структуре и их моделей нельзя отнести к особому виду задач. В качестве примера рассмотрим пары задач и их решения:

1. а) За 6 часов рабочий изготовил 120 одинаковых деталей. Сколько деталей он изготовит за 3 часа?

б) Пароход прошел 120 км за 6 ч. Сколько километров он пройдет за 3 ч, если будет идти с той жескоростью?

Эту пару задач можно решить тремя способами:

1-й способ 2-й способ 3-й способ

1)120:6=20 1)6:3=2 6 ч =360 мин

2)20-3=60 2)120:2=60 3ч =180 мин

1)360:120=3

2) 180:3=60

2. а) Из двух городов, находящихся на расстоянии 280 км, выехали одновременно две машины. Через сколько часов машины встретятся, если скорость первой машины 60 км/ч, второй - 80 км/ч?

б) Двум мастерам нужно изготовить 280 одинаковых деталей. За сколько часов они могут это сделать вместе, если первый за 1 ч изготавливает 60 деталей, а второй 80 деталей?

Приведем арифметический и алгебраический способы решения:

280 : (80 + 60) = 2 (80 + 60) • х = 240

Как видим, структура, модели и способы решения как арифметические, так и алгебраические полностью совпадают. Однако в методической литературе задачи, связанные с движением тел. традиционно принято выделять в особый тип, так как эти задачи имеют свою особенность. Особенность состоит в том, что они построены на основе функциональной зависимости между величинами: скорость, время. расстояние. Методика обучения решению таких задач зачастую связана с использованием чертежа и построена на основе четких представлений о скорости равномерного движения тел и на основе понятий двигаться навстречу друг другу, двигаться вдогонку, выехали одновременно и встретились, скорость сближения. Чтобы подготовить детей к восприятию этих понятий, необходимо проводить определенную предварительную работу, которая должна сводиться к формированию умения работать с чертежом, к осознанию понятия «скорость движения» и взаимосвязи между величинами, включенными в задачу.

Однако, как показывает практика обучения, умение решать задачи на движение у учащихся сформировано недостаточно. Например, учащимся были предложены две задачи, одинаковые по структуре, но различные по фабуле. В первой задаче речь шла о покупке тетрадей, во второй о движении тел. С первой задачей справилось значительное большинство учащихся, в то время как с задачей на движение - лишь незначительная часть. Некоторые дети вообще отказались от решения, обосновывая это тем, что задачи на движение они решать не умеют. Думается, что причина этого заключается в том, что дети недостаточно подготовлены к восприятию этих задач.

Альтернативные программы и учебники предусматривают решение более трудных и сложных задач. Рассмотрим задачу № 338 из учебника математики для III класса И. И. Аргинской ([2]):

«Из двух городов навстречу друг другу вы шли одновременно два поезда и встретились через 18 часов. Определить скорость каждой поезда, если расстояние между городами 1620 км, а скорость одного поезда на 10 км/ч больше скорости другого». Реши задачу алгебраическим способом, реши задачу, выполни необходимые действия.

Я в процессе беседы стараюсь подвести учащихся к составлению уравнения.

Пусть скорость одного поезда у км/ч, тогда скорость другого у + 10 (км/ч). Скорость сближения поездов (у + у + 10 (км/ч). Путь, пройденный ими до встречи (у + у + 10) • 18 = 1620.

При решении уравнения учащиеся могут использовать: правило умножения суммы на число (распределительный закон умножения относительно сложения); взаимосвязь между компонентам и результатом действия и только что изученное свойство равенства (а - в = с - в. а = с).

Перейти на страницу: 1 2