Алгоритм рассмотрения задач.
Самостоятельная работа широко используется при повторении и закреплении пройденного материала путем решения задач. Обычно при повторении и закреплении достаточно большого объема учебного материала (раздела, при подготовке к контрольным работам, к экзамену и т.п.) на уроке решают задачи на самые различные темы. Задачи из разных тем, разделов имеют свою специфику решения. Поэтому, прежде всего, необходимо определить, из какой темы предлагаемая задача (а, точнее, какое физическое явление рассматривается в задаче). Затем следует определить, на какой закон данная задача.
В современной производственной деятельности человека значительное распространение благодаря развитию кибернетики приобрели алгоритмические приемы. Такие приемы нашли отражение и в обучении. Однако среди них нет операций «распознавания», позволяющих отнести данную задачу к определенному типу, и они не охватывают всей совокупности возможных типов задач. Поэтому рациональнее строить алгоритмы применения физических законов. Такие алгоритмы можно применять к решению любой задачи, а число законов сравнительно невелико.
Поскольку при решении задач ученику в большинстве случаев приходиться искать ответы на такие два следующих друг за другом вопроса: «Можно ли применить данный закон (законы) в рассматриваемой ситуации?» и «Как применит его (их) для решения задачи?», алгоритм применения физического закона распадается по существу на два: 1) алгоритм распознавания применимости закона (законов) и 2) алгоритм преобразования формулы (формул) закона (законов) в соответствии с конкретной физической ситуацией. Первый их них способствует выражению единого подхода к анализу физического смысла задачи, так как выявить последний — значит найти законы, определяющие развитие явлений и свойств объектов.
Общая схема решения задачи, приведенная на с. , в определенной мере уже служит алгоритмическим предписанием о порядке действий. Вместе с тем алгоритмы не охватывают всего процесса решения задачи — алгоритмизируются лишь этапы применения законов и математических действий; это не мешает творческому подходу к другим этапам — выбору плана решения (когда учащийся выдвигает предложения, гипотезы, применяет аналогии, искусственные приемы), поиску иных вариантов решения и др. использование алгоритмов позволяет программировать учебный процесс, успешно обучать учащихся отдельным операциям. Например, изучение современного школьного курса механики предполагает последовательное применение координатного метода. Много величин и законов механики (как и электродинамики) имеют векторный характер (например, второй закон Ньютона: ).
Для вычислений чаще всего используют соответствующие уравнения в проекциях на оси координат () или модулей (), поэтому возникает необходимость обучить восьмиклассников преобразованию векторного уравнения для проекций, т.е. прежде всего выработать у них умение определять проекцию вектора на ось. Для последнего полезно следующее алгоритмическое предписание.