Содержание обучения технологии нейронных сетей

<>Нейронные сети – совокупность взаимодействующих между собой нейронов.</>

Искусственные нейронные сети позволяют моделировать деятельность нервной системы.

Общее число нейронов в центральной нервной системе человека достигает 1010–1011, при этом каждая нервная клетка связана в среднем с 103–104 других нейронов. Установлено, что в головном мозге совокупность нейронов в объеме масштаба 1 мм3 формирует относительно независимую локальную сеть, которая несет определенную функциональную нагрузку.

Биологические нейронные сети – достаточно сложны по своей структуре. Искусственно создаваемые нейронные сети являются их упрощенными моделями.

Создано множество моделей нейронных сетей, имеющих различную архитектуру.

Первой нейронной сетью был так называемый персептрон Розенблатта. Однослойный персептрон – простейший вид нейронной сети и имеет следующий вид.

Рис. 2

Однослойные сети имеют один слой вычисляющих нейронов, обозначаемых квадратами. Слой нейронов, обозначенных кругами, служит лишь для распределения входных сигналов и поэтому не учитывается при подсчете слоев нейронной сети. Нейронная сеть имеет m входов и n выходов.

Значения входов X можно обозначить одномерным массивом X, а значения выходов одномерным массивом Y.

Каждый элемент из множества входов X соединен отдельным весом с каждым искусственным нейроном. А каждый искусственный нейрон дает взвешенную сумму входов.

Будем считать веса элементами двумерного массива W размерностью m*n. Например, W[3, 2] – это вес, связывающий третий вход со вторым нейроном.

Значения выходов для нейронной сети определяются по формулам:

Y[1] = f (X[1] * W[1, 1] + X[2] * W[2, 1] + … + X[m] * W[m, 1]);

Y[2] = f (X[1] * W[1, 2] + X[2] * W[2, 2] + … + X[m] * W[m, 2]);

Y[n] = f (X[1] * W[1, n] + X[2] * W[2, n] + … + X[m] * W[m, n]).

f – это активационная функция.

Пример. Рассчитать значения выходов для данной нейронной сети

Рис 3.

при входных значениях X[1]=6.3, X[2]=-3, X[3]=5.

Активационную функцию принять пороговой, где значение порога равно 10.

Значения весов:

W[1,1]=0.5; W[1,2]=7;

W[2,1]=-7; W[2,2]=4.5;

W[3,1]=15; W[3,2]=-10;

Решение:

Y[1]= f (6.3*0.5 + (-3)*(-7)+5*15)= f (3.15+21+75) = f (99.15) = 1;

Y[2]= f (6.3*7+(-3)*4.5+5*(-10))= f (44.1-13.5-50) = f (-19.4) = 0;

Т.е. значения выходов данной сети Y[1] и Y[2] равны 1 и 0 соответственно.

Задание на дом. Рассчитать значения выходов для данной сети при входных значениях X[1]=2; X[2]=1; X[3]=-1.

Однослойные персептроны обладают малыми вычислительными возможностями, что ограничивает их использование. Более крупные и сложные нейронные сети обладают, как правило, и большими вычислительными способностями.

Многослойные сети (персептроны) – сети, в которых каждый нейрон слоя связан с каждым нейроном следующего слоя. Многослойные сети рассмотрим на примере двухслойной сети.

Рис. 4

Элементы первого входного слоя не обрабатывают, а только принимают информацию и распространяют ее далее по сети. Значения входов, количество которых равно m обозначим одномерным массивом X. Далее входная информация поступает на внутренний слой. Веса всех нейронов этого слоя формируют двумерный массив W размерностью m*n. Значения выходов внутреннего слоя формируют одномерный массив Z с количеством элементов равным n. Из внутреннего слоя информация поступает на выходной слой. Веса всех нейронов выходного слоя формируют двумерный массив K размерностью n*p. Значения выходов внешнего слоя формируют массив Y с количеством элементов равным p.

Данная сеть имеет m входов и p выходов. Данная сеть является двухслойная, потому что только два слоя нейронов обрабатывают информацию.

Перейти на страницу: 1 2 3 4