Теория распределения мест. Проблема дифференцированного подхода.

1.

Приведенные выше соображения говорят о том, что дифференцирован­ный подход к участникам олимпиады в рамках ее регламента вполне возмо­жен. Он может быть реализован лишь на стадии распределения мест, но толь­ко в том случае, когда оно проводится по нескольким показателям приоритета (4). Одного главного показателя ή

1, определяющего приоритет выполнен­ного задания с позиций формальной логики, для этого недостаточно. Педаго­гические соображения, обеспечивающие дифференцированный характер рас­пределения мест, могут быть учтены лишь с помощью второго, третьего и других показателей более высокой степени.

Смысл главного показателя приоритета ή

1 вполне ясен. Суммарный балл (3) способен испол­нять роль лишь главного показателя приоритета ή

1, и в принципе не может служить предметной базой для дифференцированного подхода.

Возможность использования величины ή

2= x

1−x

2 (5) в качестве второстепенного показателя приоритета, дополняющего суммарный балл ή

1 (4), достаточно очевидна. Если суммарный балл ή

1 определяет выполнение задания с количественной стороны, то показатель ή

2 (5) характеризует качество выполнения задания. Он показывает, в решении какой из задач (простой или сложной) участник больше преуспел.

Множественный характер показателей приоритета является свидетельством самой возможности дифференцированного подхода. С этой точки зрения соотношение (4) можно рассматривать как необходимое условие, определяющее соответствие используемой системы распределения мест требованиям дифференцированного подхода. Следует отметить, что в условиях рязанских региональных олимпиад условие (4) никогда не выполнялось. Места тради­ционно распределялись с использованием лишь одного показателя приорите­та - суммарного балла S

(3), что не дает никаких оснований даже говорить о дифференцированном подходе.

В общепедагогическом плане пренебрежение дифференцированным подходом может вызывать лишь глубокое сожаление. Олимпиада, являясь педа­гогическим мероприятием, должна заниматься не только констатацией спо­собностей участников на момент ее проведения, но и заботиться о создании мотивационной базы для развития скрытых потенциальных возможностей учащихся. В первую очередь, здесь следует обращать внимание на участников, которые выступили на олимпиаде пока еще не совсем удачно. Этих школьни­ков необходимо поддержать и отметить хотя бы самые малые их успехи на олимпиаде, подкрепив все соответствующим поощрением по соображениям педагогического характера. Дифференцированный подход к распределению мест, возможный при выполнении соотношения (4), создает для этого все необходимые условия.

Следует отметить, что введение множественного числа показателей при­оритета, определяющих саму возможность дифференцированного подхода, не может быть произвольным. Для этого необходимы различаемые этапы ре­шения задач или различаемые задачи (что несколько предпочтительнее). Имен­но по этой причине для олимпиады должны быть использованы разноуровневые задачи (2). Только различие этих за­дач сделало понятным смысл ή

2 (5) как показателя поляризации способ­ностей школьника. Для одноуровневых неразличимых задач показатель ή

2 (в отличие от ή

1, характеризующий выполнение задания с количественной стороны) потерял бы всякий смысл, что сделало бы невозможным его использование как показателя приоритета.

В нашем случае мы ограничиваемся лишь тремя показателями приоритета ή

1, ή

2 и ή

3 при распределении мест, чего вполне достаточно для нашей задачи. Смысл этих показателей достаточно прозрачен. Показатель ή

1, как показано выше, тождественен суммарному баллу и сам по себе не может быть использован в качестве критерия для распределения мест. Показатель ή

2 характеризует успехи школьника в репродуктивно-продуктивной деятельности по сравнению со средним арифметическим значением его успе­хов за отдельно взятые испытания репродуктивного и продуктивного харак­тера. Он показывает, насколько соединение способностей школьника отлича­ется от их простого арифметического сложения. Показатель же ή

Перейти на страницу: 1 2 3 4 5