Методика изучения дробных чисел
В практике преподавания основным методом изучения дробных чисел являются поясняющие описания, которые опираются на жизненный опыт и знания учащихся. Поясняющие описания не заменяют определений, понятий, а лишь показывают целесообразность их введения.
Введение дробных чисел в школьном курсе связывается с необходимостью более точного измерения величин, с делением чисел. В связи с этим целесообразно познакомить учащихся с возникновением дробных чисел в процессе практической деятельности человека, а именно в процессе измерения. Краткая историческая справка поможет учащимся лучше овладеть данным материалом. Содержание её может быть примерно следующим.
Измерение, так же как и счет, имело место у всех народов с самых древних времён; измерение было непосредственно связано со счетом. Потребность в более точном измерении явилась причиной того, что единицы мер стали раздроблять на две, на три и более частей. Этим более мелким мерам давали особые наименования, и в дальнейшем величины измерялись уже этими более мелкими единицами, однородными с ними. Так возникли первые конкретные дроби. Отвлеченных дробей в это время еще не знали.
Длинен был путь перенесения названия какой-либо части одной меры на такую же часть другой меры, это был путь создания абстрактного понятия дроби.
Так, например, в России была земельная мера четверть и более мелкая – получетверть, которая называлась осьмина. Это были конкретные дроби, единицы для измерения площади земли, но осьминой нельзя было измерить время или скорость и др. Значительно позднее осьмина стала означать отвлеченную дробь 1/8, которой можно выразить любую величину. Дроби первоначально в русских рукописях назывались долями, затем ломаными числами. При записи числа использовалась горизонтальная черта.
Довольно долгим был путь и к введению десятичных дробей. В древности некоторые народы пользовались шестидесятеричной системой счисления и дроби записывались в шестидесятеричной системе так же, как в настоящее время записывают наши десятичные дроби. Римляне пользовались двенадцатеричными дробями.
В 16 – 17 вв. в связи с развитием общества, с развитием науки и техники возникла необходимость облегчить громоздкие вычисления. Внимание математиков было обращено к десятичным дробям, к десятичной системе мер. В России учение о десятичных дробях впервые было изложено в «Арифметике» Магницкого, где были приведены и десятичные меры длины и площади. В этой же работе излагается и учение о шестидесятеричных дробях (отголосок вавилонской шестидесятеричной системы счисления).
Учащимся нужно также показать, что дроби применяются не только в математике, но и, например, в музыке.
Все знают, что Пифагор был учёным и, в частности, автором знаменитой теоремы. А то, что он был еще и блестящим музыкантом, известно не так широко. Сочетание этих дарований позволило ему первым догадаться о существовании природного звукоряда. Надо было ещё доказать это. Пифагор построил для своих экспериментов полуинструмент-полуприбор — «монохорд». Это был продолговатый ящик с натянутой поверх него струной. Под струной, на верхней крышке ящика, Пифагор расчертил шкалу, чтобы удобнее было зрительно делить струну на части. Множество опытов проделал Пифагор с монохордом и, в конце концов, описал математически поведение звучащей струны. Работы Пифагора легли в основу науки, которую мы называем сейчас музыкальной акустикой.
Оказывается, для музыки семь звуков внутри октавы такая же естественная вещь, как десять пальцев на руках в арифметике. Уже тетива самого первого лука, колеблясь после выстрела, давала готовым тот набор музыкальных звуков, которыми мы почти без изменения пользуемся до сих пор.
С точки зрения физики тетива и струна — одно и то же. Да и сделал человек струну, обратив внимание на свойства тетивы. Звучащая струна колеблется не только целиком, но одновременно и половинками, третями, четвертями и т.д. Подойдём теперь к этому явлению с арифметической стороны. Половинки колеблются вдвое чаще, чем целая струна, трети — втрое, четверти — вчетверо. Словом, во сколько раз меньше колеблющаяся часть струны, во столько же раз больше частота её колебаний. Допустим, вся струна колеблется с частотой 24 герца. Высчитывая колебания долей вплоть до шестнадцатых, мы получим ряд чисел, показанных в таблице. Эта последовательность частот так и называется — натуральный, т.е. природный, звукоряд.
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
48 |
72 |
96 |
120 |
144 |
168 |
192 |
216 |
240 |
264 |
288 |
321 |
336 |
360 |
384 |