Описание зачетной системы при изложении темы “Тела вращения”.
Что такое касательная плоскость к конусу?
Какая пирамида называется вписанной в конус?
Какая пирамида называется описанной около конуса?
IV Применение учащимися знаний в различных конкретных ситуациях.
Каждому ученику выдается подставка, штырь и проволока.
V Решение задач
На этом уроке решаются задачи по темам “Сечения конуса”, “Вписанные, описанные пирамиды ”.
VI Сообщение домашнего задания
VII Самостоятельная работа
В конце урока проводится самостоятельная работа общепринятого характера по теме “Сечения конуса”. В этой работе учащимся предлагается самим решить задачи без помощи учителя.
Радиус основания конуса 6 см (10 см). Через середину высоты проведено сечение параллельно основанию. Найти площадь сечения. Ответ: 9(2).
Радиусы оснований усеченного конуса относятся как 5:3, образующая равна 17 см (10 см), высота – 15 см (8 см). Найти площадь осевого сечения конуса. Ответ: 480 см(192 см).
С целью развития навыков самообразования и самоконтроля учащимся сразу даются ответы к задачам.
VIII Подведение итогов
п.2.3. Тема: “Шар. Сфера”
На решение задач по теме “Шар. Сфера” отведено 3 часа.
Из них:
“Сечение шара” – 1 час
“Касание шара” – 1 час
“Вписанные, описанные многогранники” – 1 час
Урок 1. Тема “Сечение шара”
Цели урока:
1. Развить пространственное воображение.
2. Проверить знания по теме “Основные элементы шара. Сечение шара”.
3. Научить учащихся применять полученные знания к решению задач.
Ход урока:
I Оргмомент
II Проверка домашнего задания
III Подготовка к решению задач.
Перед тем, как решать задачи, необходимо выяснить как учащиеся усвоили теорию по теме “Шар. Сфера”(определения, основные элементы, сечения). С этой целью проводится викторина. Учитель предлагает ученикам ответить на следующие вопросы:
Что называется шаром?
Что такое сфера?
При вращении какой фигуры получается шар?
Что называется радиусом шара, диаметром шара?
Сделать чертеж шара. Показать на нем основные элементы шара.
Каким свойством обладают все точки поверхности шара?
Найти геометрическое место точек, удаленных от данной точки на расстояние, которое меньше или равно 10 см (шар радиусом 10 см).
Какая фигура является сечением шара плоскостью?
Какая плоскость называется диаметральной плоскостью шара?
Ученики отвечают на вопросы с места, обсуждая каждый вопрос викторины. За более правильный, точный ответ учащиеся получают красный жетон, если же в ответе есть какие-то неточности, то выдается зеленый жетон. В том случае, если ученик дополнял ответы, то ему выдается синий жетон. В конце урока подводится итог. Наиболее активным ученикам выставляются оценки в журнал.
IV Расширение и углубление знаний, умений и навыков учащихся.
Каждому ученику выдается подставка, штырь и проволока, из которой предлагается выгнуть полуокружность с радиусом 15 см.