Введение понятия вектора и действий с векторами при изучении механики и математики в 9 классе средней школы.

Перемещение в физике представляет собой более узкое понятие. Вектор перемещения вводится при рассмотрении движения материальной точки или поступательного движения твёрдого тела. При таком движении все точки тела движутся одинаково. Перемещению при поступательном движении тела в механике соответствует параллельный перенос в геометрии. Следовательно, перемещение есть не что иное, как геометрический вектор .

Следует иметь в виду, что вектор можно определить, не прибегая к геометрической интерпретации, не строя направленных отрезков. Вектор в пространстве при выбранной системе координат определяется тремя числами (проекциями вектора), вектор на плоскости – двумя числами. При сложении векторов () их проекции складываются (s1x+s2x), при вычитании векторов () их проекции вычитаются, при умножении вектора на число , проекция вектора так же умножается на число ksx и т. д.

На уроках физики следует обратить внимание на понятие проекции вектора, теорему о проекциях, формулу .

В начале 9 класса в курсе геометрии после изучения тригонометрических функций (sin(х), cos(x)) вводится понятие координат вектора. Последние определяются так: выбирается координатная плоскость и от начала координат откладывается вектор , точка О является началом вектора, а точка - его концом; координатами вектора называется координаты его конца.

В курсе геометрии вводится формулы, связывающие координаты вектора с его модулем и углом, который вектор составляет с положительным направлением оси абсцисс:

На уроках изучают скалярное произведение векторов (на примере работы). После того как введена формула , следует обратить внимание учащихся на то, что в неё входят модули двух величин.

Для физиков важен распределительный закон , поскольку знание его позволяет сделать важный вывод о том, что работа результирующей силы равна сумме работ составляющих сил.

При решении векторных уравнений наряду с графическим методом используется метод проекций (координатный). Рассмотрим использование данного метода при решении задачи [8]:

Задача 1: Конический маятник массой m вращается в горизонтальной плоскости. Найти угловую скорость вращения и силу натяжения нити, если её длина l, а угол, который она составляет с вертикалью, равен α.

Решение: на маятник действует две силы – сила тяжести и сила упругости нити (см. рис. 2.3)

По II закону Ньютона:

Рис 2.3

От векторной формы записи перейдем к уравнениям в проекциях на оси координат:

.

Выразив проекции векторов через модули и принимая во внимание, что имеем:

из уравнения (2) получим:

учитывая, что , и подставляя в уравнение (1) найденное значение , вычислим угловую скорость:

Перейти на страницу: 1 2 3