Обоснование целесообразности задач с «аномальным» условием
2. Задачи переопределённые –
задачи с избыточным составом условия, с лишними данными, без которых ответ может быть получен, но которые в той или иной мере маскируют путь решения.
Как уже показано выше, данные в таких задачах могут быть противоречивыми и выявление этой противоречивости или непротиворечивости является обязательным элементом решения такой задачи.
Например, в задаче "Найти площадь прямоугольного треугольника с катетами 9 см и 40 см и гипотенузой 41 см"
мало найти ответ полупроизведением 9 на 40. Надо ещё выявить, будет ли у прямоугольного треугольника с катетами 9 см и 40 см гипотенуза равной 41 см. Без этого выяснения решение задачи не может быть признано полным.
В этом аспекте интерес представляют практические задачи. Например, при изучении первой формулы площади треугольника учитель приносит в класс вырезанный из бумаги треугольник с проведенными высотами и предлагает одному из учащихся измерить длину какой–либо стороны, потом второму ученику длину второй стороны, третьему – третьей, ещё трое измеряют высоты, каждый по одной. Результаты измерений записываются на доске. Теперь учитель предлагает вычислить площадь этого треугольника. Вопрос, какая высота к какой стороне проведена, учитель переадресует учащимся, которые измеряли, но те, естественно, не помнят, поскольку не фиксировали на этом внимания. Возникает интересная проблема, которая в итоге всё же разрешается, исходя из того, что площадь одного и того же треугольника не может иметь разных значений. Поэтому самая большая высота должна быть проведена к самой маленькой стороне, а самая маленькая к самой большой. Теперь площадь треугольника можно вычислять тремя способами, но результат, как выясняется, получается не совсем одинаковым. Появляется причина поговорить о сущности измерений, об их обязательной неточности, о качестве приближённых измерений, об особенностях вычислений с приближёнными числами и других соответствующих вопросах. И элементарная задача на применение примитивной формулы наполняется богатым содержанием.
Задачи этого типа требуют от ученика умения анализировать условие, находить в нём нужные данные и отбрасывать ненужные. Причём, "ненужными" у разных учеников могут быть разные величины. Например, в задаче "Найти площадь прямоугольника по стороне, диагонали и углу между диагоналями
" одни ученики будут искать ответ половиной произведения диагоналей на синус угла между ними (тем самым сторона становится лишним данным), другие получат ответ произведением сторон, предварительно вычислив вторую сторону по теореме Пифагора (здесь угол становится лишним данным). Возможен и третий вариант, когда лишним данным станет диагональ. Использование нескольких вариантов решения такой задачи полезно не только для их сравнения, но больше для самоконтроля: одинаковость ответов при разных решениях повышает уверенность в их правильности. Отсюда можно получить и один из надёжных способов самоконтроля в решении традиционных задач: после получения ответа вставить этот ответ в текст задачи как одно из данных, а одну из известных величин считать неизвестной и решить полученную новую задачу.
3. Нереальные (или противоречивые) задачи обычно относят к отдельному типу, хотя, как отмечено выше, они являются составной частью переопределённых (иногда определённых) задач.
Пример: Найти площадь треугольника со сторонами 10 см, 19 см и8 см.
Вовсе необязательно решать приведенную задачу, чтобы понять, что она не имеет решения. Достаточно лишь проверить условие на противоречивость при помощи неравенства треугольника и убедиться, что задача не может иметь решения.
Можно было бы решить эту задачу, используя формулу Герона, но и тогда в конце концов был бы получен противоречивый результат (подкоренное выражение получилось бы отрицательным).
Для таких задач характерным является то, что они могут иметь достаточно красивое решение, как это было с приведённой выше задачей на переливание жидкости, но только это решение будет противоречить здравому смыслу. При решении таких задач необходимо всегда в конце возвращаться к условию и делать проверку полученного решения. А поскольку противоречивость задачи не всегда бросается в глаза, это приучит выполнять проверку полученного ответа в каждой задаче. Некоторые из задач этого типа позволяют выявить противоречие данных еще при анализе условия, в результате чего процесс решения становится излишним. Достаточно частое повторение таких ситуаций приведёт учащихся к необходимости анализировать условие перед началом решения, чтобы избавить себя от лишней работы.
Итак, мы выяснили, что каждый из указанных типов задач несёт в себе определённую развивающую функцию. Так, переопределённые задачи требуют умения анализировать условие и строить решение задачи при помощи минимального числа данных. Противоречивые задачи заставляют делать проверку решения, более внимательно анализировать данные задачи. Неопределённые задачи требуют достаточно обширных знаний об объекте задачи, о связях его с другими математическими объектами, которые могут оказаться полезными при получении пусть неопределённого, но всё же ограниченного некими рамками ответа.