Основные понятия линии уравнений
Обратимся к разобранному уравнению 5х+4=3x+10. С использованием равносильности его решение проводится так: «Поскольку перенос членов уравнения из одной части в другую с изменением знака — равносильное преобразование, то, осуществив его, приходим к уравнению, равносильному данному: 5х—3х=10—4. Упрощая выражения в левой и правой частях уравнения, получим 2х=6, откуда х=3».
Отметим особенности приведенного решения по сравнению с изложенным ранее. Прежде всего, оно более свернуто, предполагает намного более высокий уровень владения материалом курса алгебры. Поэтому применению такого способа решения уравнений и их систем должна предшествовать большая подготовительная работа. Объем предварительного материала зависит от общих методических установок, используемых в учебных пособиях. Например, в учебниках алгебры для VI—VIII классов под редакцией А. И. Маркушевича понятие о равносильности вводится спустя полтора года после начала изучения систематического курса алгебры. В других курсах оно вводится гораздо позже, в старших классах.
В случае отсутствия понятий равносильности и логического следования описание процесса решения также становится постепенно все более сжатым. Отсутствие указанных терминов проявляется в том, что само описание решения не содержит элементов обоснования, которое в этих условиях произвести достаточно сложно. По этой причине в пособиях, где равносильность и логическое следование появляются поздно, сравнительно большое внимание уделяется формированию не общих приемов решения уравнений, а навыков решения уравнений тех или иных классов.
Использование логической терминологии при описании решений позволяет параллельно с нахождением корней получать также и логическое обоснование.» Особенно велика роль логических понятий при итоговом обобщающем повторении курса алгебры и всего курса математики средней школы. Поскольку при этом необходимо выявить структуру крупных частей изученного материала, отсутствует возможность вновь пройти весь путь нахождения приемов решений различных классов уравнений, неравенств и их систем. Логические понятия позволяют не только быстро восстановить путь нахождения таких приемов, но и одновременно обосновать их корректность. Тем самым происходит развитие средств логического мышления учащихся. Учитывая это, на этапах обобщающего повторения целесообразно формулировать свойства равносильности и логического следования в общем виде и иллюстрировать их заданиями, относящимися к различным классам уравнений и их систем.