Абстрактно-дедуктивный метод

С точки зрения математики в "абстрактно-дедуктивный метод" входят многие приемы доказательства. Абстрактно-дедуктивным методом установления истины и исследования связи между предложениями становится логическое доказательство.

Формирование понятий – сложный психологический процесс. Он осуществляется и протекает по следующей схеме:

ощущения -> восприятие -> представление -> понятие

Процесс формирования понятий состоит из мотивации введения понятия, выделения его существенных свойств, усвоения определения, применения понятия, понимания связи изучаемого понятия с ранее изученными понятиями. Формирование понятия осуществляется в несколько этапов:

1. мотивация (подчеркивается важность изучения понятия, активизируется целенаправленная деятельность школьников, возбуждается интерес к изучению понятия с помощью привлечения средств нематематического содержания, выполнения специальных упражнений, объясняющих необходимость развития математической теории);

2. выявление существенных свойств понятия (выполнение упражнений, где выделяются существенные свойства изучаемого понятия);

3. формулировка определения понятия (выполнение действий на распознавание объектов, принадлежащих понятию, конструирование объектов, относящихся к объему понятия).

Выделяются два пути формирования понятий (рис. 1).

Рис. 1. Пути формирования понятий

Объем понятия раскрывается с помощью классификации. Под классификацией часто понимают последовательное, многоступенчатое разбиение множества на классы с помощью некоторого свойства.

Классификация понятий - выяснение объема понятий, т.е. разделение множества объектов, составляющих объем родового понятия, на виды. Это разделение основано на сходстве объектов одного вида и отличии их от объектов других видов. Правильная классификация понятий предполагает соблюдение некоторых условий:

1. Классификация должна проводиться по определенному признаку, остающемуся неизменным в процессе классификации.

2. Понятия, получающиеся в результате классификации, должны быть взаимно независимыми, т.е. их пересечение должно быть пустым множеством.

3. Сумма объемов понятий, получающихся при классификации, должна равняться объему исходного понятия.

4. В процессе классификации необходимо переходить к ближайшему в данном родовом понятии виду.

Классификация натуральных чисел (рис. 2) и классификация треугольников по сторонам и углам (рис. 3), позволяют наблюдать выполнение этих четырех условий.

Рис. 2. Классификация натуральных чисел

Рис. 3. Классификация треугольников

В методическом смысле полезными в обучении математике могут оказаться и схемы, на которых изображена зависимость изучаемых объектов. Например, в курсе планиметрии рассмотрим класс четурехугольников (рис. 4):

Рис. 4. Схема четурехугольников

Заключительным этапом формирования понятия является его определение. Определить понятие - это значит перечислить его существенные свойства. Определение понятия - это предложение, в котором раскрывается содержание понятия, т. е. совокупность условий, необходимых и достаточных для выделения класса объектов, принадлежащих определяемому понятию.

Явные и неявные определения. Явные и неявные определения различаются в зависимости от своей структуры. Явные определения содержат прямое указание на существенные признаки определяемого понятия; определяемое и определяющее в них выражено четко и однозначно. Например, «Углом называется фигура, образованная двумя лучами, выходящими из одной точки»; «Прямоугольник есть параллелограмм с прямым углом».

Явное определение объектов, обозначение выражений, дескрипция («Выражение a + a + . + a (n слагаемых) ввиду его важности кратко обозначают na. Символ na обозначает сумму n слагаемых, каждое из которых равно a »).

Перейти на страницу: 1 2 3 4