Теоретический материал электронного учебника

После анализа нескольких учебников и методических пособий мною был отобран следующий теоретический материал. Совместно с моим научным руководителем Анатолием Константиновичем Рябогиным была разработана система контекстно-зависимых пояснений, которую я также привожу ниже.

Этим знаком будут обозначаться фрагменты системы подсказок, относящиеся к подчеркнутому слову.

ЧИСЛОВЫЕ СИСТЕМЫ

1.

Множество натуральных чисел

Определение: Множество называется числовым, если его элементами являются числа.

Известны следующие числовые системы:

N

- множество натуральных чисел;

Z

- множество целых чисел;

Q

- множество рациональных чисел;

R

- множество действительных чисел;

С

- множество комплексных чисел.

Между этими множествами установлены следующие отношения:

N

Ì Z

Ì Q

Ì R

Ì C

.

В основе расширения числовых множеств лежат следующие принципы: если множество А расширяется до множества В, то:

1) А Ì B;

2) операции и отношения между элементами, выполнимые во множестве А, сохраняются и для элементов множества В;

3) во множестве В выполняются операции, не выполнимые или частично выполнимые во множестве А;

4) множество В является минимальным расширением множества А, обладающим свойствами 1) – 3).

Минимальность расширения множества А обладающее свойствами 1–3 понимается в том смысле, что: 1. выполняются свойства 1–3;

2. В – наименьшее множество для которого выполняются свойства 1–3 и для которого выполняется операция невыполнимая или частично выполнимая во множестве А.

Множество натуральных чисел N

строго определяется с помощью аксиом Пеано.

1. Существует натуральное число 1, не следующее ни за каким натуральным числом (натуральный ряд начинается с 1).

2. Каждое натуральное число следует только за одним и только одним натуральным числом (в натуральном ряду нет повторений).

3. За каждым натуральным числом следует одно и только одно натуральное число (натуральный ряд бесконечен).

4. Аксиома индукции. Пусть М

Ì N

. Если:

1) 1 Î М

;

2) " а Î М

множеству Мпринадлежит и следующий за а элемент а1 то множество Мсовпадает с множеством натуральных чисел.

Итак, множество N

= { 1, 2, 3, 4, .}.

На аксиоме 4 основан метод математической индукции. Доказательство различных утверждений этим методом проводится от частного к общему, а затем делается вывод о справедливости данного утверждения.

П р и м е р. Доказать методом математической индукции следующее равенство:

Д о к а з а т е л ь с т в о.

1. Проверим справедливость данного утверждения для n = 1: , т.е. 1 = 1.

Проверка при n=1 ОБЪЯЗАТЕЛЬНА!

2. Предположим, что данное равенство выполняется для k слагаемых, т.е. при n =k:

3. На основании предположения 2 докажем справедливость данного равенства для n = k+1:

Ho , а потому , а так как , следовательно

Теперь можно сделать вывод о том, что данное равенство справедливо " n Î N

.

2.

Множество целых чисел

Во множестве натуральных чисел выполняются операции сложения и умножения, но не всегда выполняется операция вычитания. Расширяя множество N

Перейти на страницу: 1 2 3 4 5