Способы решения текстовых задач.
При ознакомлении с решением задачи на непропорциональное деление можно иди другим путем: сначала решить готовые задачи, а позднее выполнить преобразование задачи на нахождение четвертого пропорционального в задачу на пропорциональное деление и после их решения сравнить как сами задачи, так и их решения.
Обобщению умения решать задачи рассмотренного вида помогают упражнения творческого характера. Назовем некоторые из них.
До решения полезно спросить, на какой из вопросов задачи получится в ответе большее число и почему, а после решения проверить, соответствую ли этому виду полученные числа, что явится одним из способов проверки решения. Можно далее выяснить, могли ли получиться в ответе одинаковые числа и при каких условиях.
Полезны упражнения на составление задач учащимися с последующим решением их, а также упражнения по преобразованию задач. Это, прежде всего, составление задач, аналогичных решенной. Так, после решения задачи с величинами: ценой, количеством и стоимостью – предложить составить и решить похожую задачу с теми же величинами или с другими, например скоростью, временем и расстоянием. Это составление задач по их решению, записанному как в виде отдельных действий, так и в виде выражения, это составление и решение задач по их краткой схематической записи (см. приложение 1).
Ученики называют величины, подбирают и называют соответствующие числовые данные, формулируют вопрос и решают составленную задачу. Такую схематическую запись можно выполнить на листе бумаги, причем название величин можно записать на карточках и вставить их в верхнюю графу (цена, количество, стоимость; масса одного предмета, число предметов, общая масса и др.). Можно предлагать для составления задач краткую запись с числовыми данными или рисунок. Позднее, после рассмотрения задач на пропорциональное деление второго вида и задач на нахождение неизвестных по двум разностям можно выполнить упражнения на преобразование задачи одного вида в другой, а после их решения выполнить сравнение самих задач и решений этих задач.
Работа по ознакомлению с решением задач на пропорциональное деление второго вида может быть проведена аналогично рассмотренной. При решении задач этого вида ученики должны выполнять работу с большей долей самостоятельности, поскольку эти задачи сходны с задачами ранее рассмотренного вида (их решение отличается последними действиями: если ранее это было умножение, то здесь – деление). Однако сходство задач приводит к ошибкам: некоторые ученики смешивают решения этих задач, выполняя вместо деления умножение. Одним из средств предупреждения таких ошибок служит решение пар задач различного вида и последующее сравнение самих задач, а также их решений. Приведем пару таких задач:
1) В столовую в первую неделю привезли 4 одинаковых мешка крупы, а во вторую – 5 катких же мешков. Всего за эти две недели привезли 540 кг крупы. Сколько килограммов крупы привезли в каждую неделю?
2) В столовую за две недели привезли 9 одинаковых мешков крупы. В первую неделю привезли 240 кг крупы, а во вторую – 300 кг. Сколько мешков крупы привезли в каждую неделю.
Записав каждую задачу кратко, ученики легко установят, в чем их сходство и в чем различие. После решения этих задач дети должны установить сначала сходство решений (обе задачи решаются четырьмя действиями, два первых действия одинаковые), а затем – различие (в первой задаче два последних действия – умножение, а во второй – деление). Заметим, что пары таких задач включены в учебник.
До ознакомления с решением задач на нахождение неизвестных по двум разностям важно предусмотреть специальные подготовительные упражнения, с помощью которых раскрывается основная проблема задачи.