Практическая часть.
Учитель должен на практике руководствоваться теоретическими основами. Теория и практика неразрывно связана между собой и не могут существовать друг без друга. Рассмотрев и ознакомившись с теоретической основой решения задач, хотела бы полученные знания на практике. То есть рассмотреть, как лучше поставить вопрос к задаче, сделать краткую запись, как проанализировать задачу, каким способом легче решить задачу. А также рассмотреть задачи решаемые в третьем классе: задачи на увеличение (уменьшение) числа на несколько единиц, сформированные в косвенной форме; задачи на пропорциональное деление, задачи на нахождение неизвестных по двум разностям, задачи на встречное движение и в противоположных направлениях и другие.
При анализе задачи от вопроса и от числовых данных можно выделить несколько этапов, достигнуть которые можно путем решения простых задач:
1. В одной стопке были несколько тетрадей и в другой стопке были тетради. Сколько тетрадей в двух стопках?
2. На одной тарелке лежало б яблок и на другой лежало несколько яблок. Сколько яблок лежало на двух тарелках?
3. На одном кусте 4 помидора, а на другом 5. Сколько всего помидоров на двух кустах?
Рассматривается первая задача. Ведется беседа:
— Условимся, что при анализе вопрос задачи будем обозначать прямоугольником со знаком вопроса. Чтобы дать ответ на вопрос задачи, что надо знать? (Сколько было тетрадей в первой стопке и сколько во второй.)
В прямоугольнике ставим знак вопроса — вопрос задачи. От этого прямоугольника проведем два отрезка и начертим два „других прямоугольника. Поскольку этих чисел в задаче не дано, то в прямоугольниках ставим знаки вопроса (рис. 1).
Рассматривается вторая задача. Учитель чертит на доске схему (рис. 2), сопровождая беседой:
рис. 1 рис. 2
— Чтобы ответить на вопрос задачи, какие числа нам надо знать? (Сколько яблок лежало на каждой тарелке.)
— На первой тарелке лежало 5 яблок, поэтому в одном прямоугольнике пишем число 5. Сколько яблок было на второй тарелке, в задаче не сказано, поэтому во втором прямоугольнике ставим знак вопроса.
Учащиеся убеждаются в том, что и вторую задачу решить нельзя.
|
— Чтобы ответить на вопрос третьей задачи, что нам надо знать? (Сколько помидоров было на первом и втором кустах.)
— Можем мы эту задачу решить? (Да, можем.)
— Что мы запишем в прямоугольниках? (В одном запишем число 4, а в другом — число 5.)
После этого учащиеся должны повторить рассуждение в связной форме: чтобы ответить на вопрос задачи, надо знать, сколько помидоров было на первом кусте и сколько помидоров было на втором кусте. Оба эти числа нам известны. Чтобы решить задачу, надо к 4 прибавить 5, получится 9. Ответ 9 помидоров.
Затем решаются задачи в два и в три действия: «Отец и сын окапывали кусты смородины. Отец в час окапывал 5 кустов, а сын 3. Сколько времени они должны работать вместе, чтобы окопать 24 куста?» После уяснения и сокращения записи условия задачи учащиеся под руководством учителя разбирают ее подобно тому, как разбирали простые задачи. Затем ведется фронтальная беседа: