Практическая часть.

Задачи, обратные данной, ученики могут составить сами по преобразованным чер­тежам, которые выполняет учитель. Снача­ла искомым становится время движения до встречи, а затем

скорость одного из вело­сипедистов. Вот эти измененные чертежи:

План решения той и другой задачи уче­ники могут составить сами. Решение лучше записать отдельными действиями. Затрудне­ние обычно вызывает один из способов решения последней задачи (48:2=24, 24-13= 11). В этом случае, обращаясь к иллю­страции, надо показать, что в каждый час велосипедисты сближались на одинаковое расстояние, поэтому легко узнать, на сколько километров они сближались в час, выпол­нив деление (48:2=24), зная это и скорость одного из них, можно найти скорость дру­гого (24—13=11).

Теперь полезно сравнить задачи, выявив сходное (все задачи на встречное движе­ние, в них одинаковые величины) и раз­личное (в первой задаче находили расстояние по известным скорости каждого велосипеди­ста и времени движения до встречи; во второй задаче находили время движения до встречи по известным расстоянию и скорости каждого велосипедиста; в третьей задаче находили скорость одного из велосипедистов по известным расстоянию, времени движения до встречи и скорости другого велосипеди­ста). Сравнив решения, ученики должны за­метить, что каждую задачу можно решить двумя действиями, причем в этом случае первым действием находили, на сколько ки­лометров сближались велосипедисты в час, но при решении первой и второй задачи это находили сложением, а при решении третьей задачи — делением. Далее, как и в других случаях, на последующих уроках ученики решают задачи этих видов сначала под руководством учителя, а затем самостоятельно. Здесь так же, как и при решении других задач, полезно предлагать различные упражнения творческого характера. В част­ности, ставить вопросы вида: «Могли ли ве­лосипедисты (теплоходы и т. п.) встретиться на середине пути? При каких условиях? Если велосипедисты после встречи продол­жат движение, то какой из них приедет раньше к месту выхода другого велоси­педиста, если будет двигаться с той же скоростью?»

Рассмотрим задачу, решающуюся несколькими способами:

«В зале 8 рядов стульев, по 12 стульев в каждом ряду. В зал пришли ученики из двух классов, по 42 ученика в каждом. Хватит ли стульев для учеников? Если останутся незанятые, то сколько?»

Используя разбор задачи от данных к во­просу, дети легко получили решение, рассуж­дая следующим образом: «Зная, что в зале 8 рядов по 12 стульев в каждом ряду, найдем, сколько всего стульев в зале: 12×8=96. Те­перь определим, сколько стульев будет заня­то, т. е. узнаем, сколько учеников в двух классах. Столько же будет занято и стульев: 42×2= 84. Сравним теперь число всех стульев - 96 и число стульев, которые займут ученики двух классов, - 84. 96>84, значит, стульев хватит. 96—84=12. 12 стульев останутся незанятыми».

Чтобы отыскать другие способы решения, я предложила детям представить, как могли ученики двух классов войти в зал и в соответ­ствии с этим дополнить условие задачи. Рассуждая, сопоставляя, дети отыскали три способа решения. И эти три способа записали в тетрадь:

II способ

1) 2.8=96

2) 96-42=54

3) 54—42=12

О т в е т. 12 стульев останутся незанятыми.

Вначале свои места заняли ученики одного класса, а затем другого.

III

способ

Всех учащихся рассадили так, чтобы все места в ряду были заняты, т. е. в каждом ряду было по 12 человек:

1) 42×2=84 — места займут ученики двух классов;

2) 84:12= 7 — рядов займут ученики двух классов;

3) 8-7= 1 — ряд или 12 стульев останутся незанятыми.

Ответ: 12 стульев останутся незанятыми.

IV способ

Стулья в зале распределили поровну между классами, т. е. по 48. Поэтому сначала узнаем, сколько незанятых стульев осталось у каждо­го класса.

Перейти на страницу: 1 2 3 4 5 6 7 8 9 10