Практическая часть.
Задача №1
"Из 560 листов бумаги сделали 60 тетрадей двух сортов. На каждую тетрадь первого сорта расходовали по 8 листов, а на каждую тетрадь второго сорта - по 12 листов. Сколько сделали тетрадей каждого сорта?" К задаче даны два указания:
1. Решить задачу алгебраическим способом.
2. Предложить свое задание к задаче.
Следуя указанию учебника, учитель подводит учащихся к составлению уравнения, рассуждая примерно так: "Обозначим буквой х - число тетрадей первого сорта, тогда тетрадей второго сорта будет (60 - х). Известно, что на тетрадь первого сорта расходовали 8 листов, значит, (8х) листов расходовали на тетради первого сорта. На тетрадь второго сорта расходовали 12 листов. Следовательно, на тетради второго сорта израсходовано 12 (60-х) листов. Теперь можно найти, сколько всего листов израсходовано:
(8х + 12 (60-х), а это по условию равно 560. Составим уравнение: 8х + 12 (60 - х) = 560. Используя дистрибутивный закон (правило умножения числа на разность), дети записывают уравнение: 8х + 720 - 12х = 560.
И если составление уравнения не вызывает затруднений у учащихся, то при его решении возникают определенные трудности.
Действительно, действия с отрицательными числами будут изучаться позднее, а решение требует выполнения операций над ними.
Приведем образец решения уравнений.
8х+ 12 (60-х) =560
8х+720-12х=560
8х + 720 - 720 - 12х = 560 - 720 (из обеих частей уравнения вычли по 720)
8х- 12х =-160
(8 - 12)х = - 160 (применили дистрибутивный закон умножения относительно вычитания, вынесли неизвестное число х за скобки)
-4х=-160
х=(-160):(-4)
х=40
Итак, чтобы найти неизвестное число, нужно обе части уравнения разделить на (- 4), т.е. необходимо провести операции с отрицательными числами, а понятие об отрицательном числе будет изучаться позднее.
Чтобы избежать этого, учитель может попытаться решить это уравнение следующим образом:
8х+ 12(60-х)=560
8х+720- 12х =560
8х+720+12х-12х=560+12х прибавим 12х
8х+720=560+ 12х
8х - 8х + 720 = 560 + 12х - 8х вычитаем из обеих частей 8х
720 = 560 + (12 - 8)х выносим за скобки х
720 - 560 = 560 - 560 + 4х вычитаем из обеих частей 560
160=4х
х= 160:4
х=40
Согласитесь, что подобные рассуждения слишком громоздки и затруднительны. Зная это, учитель подводит учащихся к другому уравнению, решение которого легче и понятнее детям. Рассуждения примерно таковы: "Пусть х - число тетрадей второго сорта. Тогда (60-х) - число тетрадей первого сорта. На тетради второго сорта пошло 12х листов, а на тетради первого -8 (60 - х) листов. На все тетради пошло 12х + 8 (60 - х) листов бумаги. По условию задачи это равно 560 листам". Составляем уравнение:
12х+8 (60-х) =560
12х+480-8х=560
12х-8х =560-480
(12-8)х=80
4х=80
х = 80 : 4
х=20
Ответ: 20 тетрадей второго сорта, 40 тетрадей первого сорта (60 - 20 = 40).
Рассуждения учителя и учащихся могут быть примерно такими: "Предположим, что все тетради были тетрадями первого сорта. Тогда потребовалось бы 8 • 60 = 480 листов бумаги. Но в условии задачи сказано, что пошло 560 листов, т.е. израсходовано больше, чем предположили, на 80 листов (560 - 480 = 80) за счет того, что были тетради другого сорта, на которые шло по 12 листов. На одну тетрадь второго сорта расходовали больше на 4 листа. Итак, на все тетради второго сорта израсходовали на 80 листов больше, а на каждую тетрадь - на 4 листа больше. Это значит, тетрадей второго сорта будет столько, сколько раз укладывается 4 в числе 80: 80:4 = 20 (тетрадей). Чтобы найти число тетрадей первого сорта, нужно из 60 вычесть 20". Затем записывается решение задачи:
1)80-60=480
2) 560 - 480 = 80
3) 12-8=4
4) 80 : 4 = 20
5) 60 - 20 = 40
Второй арифметический способ решения основан на предположении, что все тетради были второго сорта.
Аналогичные рассуждения приводят к решению:
1) 12 • 60 = 720 тетрадей
2) 720 - 560 = 160 тетрадей
3) 12-8 =4 тетради