Методические основы уровневой дифференциации при обучении алгебре в классах с углубленным изучением математики

При всем этом нельзя забывать, что даже этот круг учеников нуждается в отработке элементарных операций. Поэтому далее целесообразно включить устную работу (10-15 мин.), направленную на отработку специальных умений по этой теме. Затем решить по одной задаче на характеристическое свойство каждой из прогрессий.

Закончить урок можно решением таких задач:

Задача 1.

Выписаны 2 арифметические прогрессии. Если из каждого члена первой прогрессии вычесть соответственно член второй прогрессии, то получится ли снова арифметическая прогрессия?

Решение:

Ответ: да.

Задача 2.

Могут ли три последовательных члена арифметической прогрессии вместе с тем быть и тремя последовательными членами геометрической прогрессии? (прогрессии с неравными членами).

Решение: Пусть числа а, в, с, образуют арифметическую прогрессию и геометрическую одновременно, тогда:

Ответ: нет.

Задача 3.

В двух трехчленных прогрессиях (арифметической и геометрической с положительными членами) одинаковы оба первых и оба последних члена. В какой из них сумма членов больше?

Ответ:

в арифметической.

Однако вместо этих задач можно сделать экскурс в историю. Рассказать о том, что примеры отдельных арифметических и геометрических прогрессий можно встретить еще в древне-вавилонских и египетских надписях (500-400 лет до нашей эры), что в Древней Греции были известны такие суммы:

А знаменитая задача о награде за изобретение шахматы впервые встречается у хорезмского математика Аль-Бируни

Можно упомянуть и о бесконечных рядах и их применении. Впечатляет и способ вычисления суммы бесконечного ряда

2. Класс шумный, думающий, заинтересованный предметом, но с недостаточно развитой самостоятельностью действий.

В этом случае работа будет носить фронтально-индивидуальный характер. Учащиеся, отвечающие вышеизложенной характеристике, любят учиться, но испытывают тягу к получению быстрых результатов. Однако с большим интересом воспринимают информацию о самих себе: о своей памяти, внимании, работоспособности. Учитель должен завладеть вниманием учащихся и удержать его до конца урока. Класс с готовностью выполняет четкие указания учителя и этот момент надо непременно использовать. Но необходимо не трафаретное начало. Поэтому учащихся можно сразу озадачить вопросами: какие анализаторы человек использует при восприятии информации? Дальше можно сказать, что основными являются анализаторы запаха, вкуса, осязания, слуха. Для рационального восприятия необходимо знать свой доминирующий анализатор, обычно зрение или слух. Именно его следует использовать в первую очередь. Для выявления учеников предлагаются задания следующего типа. На доске записаны числа 6,8,10,12,14,16,18,20;-12; -9; -6; -3; 0; 3; 6; 9; 12.

Учащиеся после минутного рассмотрения должны воспроизвести запись в тетрадях, что удается не каждому. Далее им предлагается ряд равенств, для запоминания которых включается не только зрительная, но и логическая память:

Затем делается акцент на слуховую память: медленно читается определение, которое необходимо записать после прослушивания.

Перейти на страницу: 19 20 21 22 23 24 25 26 27 28 29