Методические основы уровневой дифференциации при обучении алгебре в классах с углубленным изучением математики

Групповая работа – одна из форм активизации учащихся. По определению Х.И.Лийметса под групповой работой понимают такое построение работы, при которой класс делится на группы по 3-8 человек (чаще по четыре человека) с целью выполнения той или иной учебной задачи.

Групповая работа так же представляет много возможностей для индивидуализации, особенно, если группы составлены из схожих по какому-либо признаку учащихся, причем тогда для каждой группы подбираются специальные задания.

В малой группе учащийся находится в более благоприятных условиях, чем при фронтальной работе. Группы могут быть сформированы как учителем (на основании уровня знаний и/или умственных способностей), так и по пожеланию учащихся.

Групповая работа достаточно эффективна, однако следует следить за тем, чтобы более сильные и старательные не заглушали инициативу более слабых и пассивных. Целесообразно проводить работу также с относительно стабильными группами, что позволяет оперативно распределять задания различной степени сложности, причем по результатам обучения возможен переход из одной группы в другую.

И так групповая учебная деятельность – это организованная система активности взаимодействующих учащихся, направленная на целенаправленное решение поставленной учебной задачи.

Основными показателями являются отношение учашихся к совместному действию. Это отношение выявляется

по характеру деятельности группы при выполнении задания;

по используемым средствам фиксации совместного действия (моделирование, выработка способа, формулировка выводов и т.д.)

по характеру общения членов группы.

При учебной кооперации учащиеся выполняют общую работу, осуществляя обмен операциями и мнениями. В это процессе наступают понимание каждым участником своей зависимости от действий другого и ответственности.

Рассмотрим систему задач разной тематики для возможного решения в группах. Задачи подобраны по следующему принципу: по каждой теме предлагается по две задачи, причем одно из них является более сложной в смысле выявления способа решения или выделения основных отношений и связей и требует творческого подхода к решению.

1. Упростить выражение

Решение.

Тактически нецелесообразно складывать сразу все дроби.

Сложим первые две:

Прибавим третью:

Затем четвертую : и пятую:

Можно предложить и другой способ решения.

Легко проверить, что причем аналогичные равенства справедливы и для других дробей. Заменив каждую дробь. Входящую в выражение на соответствующую разность получим:

Ответ:.

2. Докажем равенство

Перейти на страницу: 21 22 23 24 25 26 27 28 29 30 31